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Introduction & Contributions

We proposeMS-HGNN, a symmetry-equivariant hetero-
geneous graph neural network for robotic dynamics learn-
ing. By embedding kinematic structure and morpholog-
ical symmetry into the model, MS-HGNN improves in-
terpretability, data efficiency, and model efficiency. We
validate our design through theory and experiments on di-
verse robotic tasks.

Preliminaries

Morphology-Informed HGNN. We use a Heteroge-
neous Graph Neural Network (HGNN), where node and
edge types reflect the robot’s kinematic structure. Nodes
such as base, joints, and feet are modeled as distinct types
(Vb, Vt, Vf ), while edges encode physical links (Eij) be-
tween them. This structured graph improves representa-
tion of rigid-body dynamics.

Morphological Symmetry. Rigid-body systems often
exhibit symmetric kinematic branches and motions. We
define a symmetry group G acting on robot states (q, q̇),
with:

g ▷⋄ q :=

[
XgXBX−1

g

ρM(g)qjs

]
, g ▷⋄ q̇ :=

[
XgẊBX−1

g

ρTqM(g)q̇js

]
where XB ∈ SEd is the base pose, and ρ(g) is a group
representation acting on the joint states. These symme-
tries are embedded in the GNN enabling weight sharing,
enabling efficient learning and generalization across sym-
metric morphologies.

Methods

1. Determine the morphological symmetry group Gm <
GE and the unique kinematic branches S of the system,
where GE is the generalized euclidean group.

2. Create subgraphs for all kinematic branches as
Gi = {Gi ,1(Si ,1), . . . ,Gi ,nrep(S)(Si ,nrep(Si))}, where Gi ,j1

∼=
Gi ,j2,∀j1, j2 ∈ N ≤ nrep(Si).
3. Label each subgraph Gi ,j as Gp,q, where p ≤ |Gm|
corresponds to an element in group Gm, and subgraphs
with same q lies in the same orbit.

4. For any subgraph class {Gq}, including the base node
{Vb} that lacks the full set of |Gm| graphs, complete each
group orbit by replicating elements along missing transfor-
mations and label them as Gp,q.

5. Connect {Vb,p} with Cayley Graph. Connect each
subgraph Gp,q to Vb,p with edge type Eq, formalizing a
graph G.
6. Add input encoders and output decoders for each node
based on the subgraph class p it belongs to, ensuring mor-
phological symmetry equivariance Gm in our GNN.

MS-HGNN: Morphological-Symmetry-Equivariant Heterogeneous Graph Neural Network

Figure 1: Overview of the MS-HGNN framework for robots with symmetry type G := K4. (a) The input space consists of the robot’s current state observations, which are mapped to corresponding nodes in the HGNN.
(b) and (d) The morphological symmetry encoder-decoder pair ensures that the learned representations respect the robot’s morphology. (c) The HGNN is automatically constructed to preserve geometric symmetry. (e) The
output space consists of dynamics-relevant variables, obtained from their corresponding nodes in the HGNN.
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(a) (b)Figure 2: Morphological symmetry groups G := K4 (left, Solo robot) and G := C2 (right, A1 robot).

We prove that our constructed graph G is equivariant under
morphological symmetry transformations.

▶G is composed of subgraphs {G1, . . . ,Gq} (e.g., legs,
arms), each with p symmetric instances.

▶ Symmetries are defined via group actions gm:

▶ Euclidean: gm ▷ Gp,q = Ggm(p),q

▶Morphological: gm ▷⋄ Gp,q = Ggm(p),q

We define the group action via permutation matrix ρb.
Theorem (Permutation Automorphism). If ϕρb satisfies:

ρbAGρ
T
b = AG, ρbXG = XG,

then it is a graph automorphism. Lemma (Equivariance).
If ϕρb is an automorphism, then:

gm ▷ zG(XG) = zG(gm ▷ XG)

Theorem (MS-HGNN Equivariance). If encoder h and
decoder l satisfy:

h(X ) = ρ(g)X , l(X ) = ρ(g)−1X ,

then our HGNN satisfies:

gm ▷⋄ fG(X ) = fG(gm ▷⋄ X )

Conclusion: Our MS-HGNN is equivariant to morpholog-
ical symmetry and generalizable across robotic systems.

Contact State Detection (Classification) Experiment
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Figure 3: Left: Contact state detection and Right: Sample efficiency on the real-world Mini-Cheetah dataset [1].

Task: Predict 4-leg contact states
from proprioceptive histories.

▶Best Model: MS-HGNN-K4

(F1: 0.939, Acc: 0.875).

▶Model Efficiency: Uses only
38% of ECNN’s parameters.

▶ Sample Efficiency: Achieves
∼0.9 F1 with 5% training data.

Conclusion: Symmetry-aware
graph design improves accuracy,
and parameter & data efficiency.

Ground Reaction Force Estimation (Regression) Experiment

Unseen
Friction

Unseen
Speed

Unseen
Terrain

Unseen
All

Total
6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

R
M

S
E

Figure 4: Ground reaction force estimation test RMSE on
simulated A1 dataset [2].

Task: Predict 1D/3D GRFs from
150-step proprioceptive history.

▶MS-HGNN-C2 achieves the
lowest RMSE, improving over
MI-HGNN by 1.50% (1D)
and 1.62% (3D).

▶The relatively modest gain in
3D is because of the low
X/Y GRF magnitudes.

Conclusion: Preserving sym-
metry improves force prediction
across diverse terrains.

Centroidal Momentum Estimation (Regression) Experiment
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Figure 5: Left: Centroidal momentum estimation results and Right: Linear cosine similarity for models of varying sizes
on the synthetic Solo dataset [3].

Task: Predict linear & angular momentum from joint-space inputs.

▶MS-HGNN-C2/K4 outperform all baselines [3][2].

▶MS-HGNN-C2 achieves ∼0.945 Cos. Sim. with 13.5k params.

Conclusion: Embedding correct morphological symmetry enables
accurate and compact momentum estimation; MI-HGNN fails due
to symmetry mismatch.

Conclusion & Future Work

We propose MS-HGNN, a general framework for robotic dynamics
learning that embeds kinematic structures and morphological symme-
tries into a graph-based neural architecture. By integrating symbolic
priors, it combines the strengths of symbolic reasoning and neural
networks. Theoretical and empirical results show improved gener-
alization, sample efficiency, and interpretability. Future directions
include integrating more physical priors, extending to meta- and re-
inforcement learning, and unifying perception and control.
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