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Introduction & Contributions MS-HGNN: Morphological-Symmetry-Equivariant Heterogeneous Graph Neural Network Ground Reaction Force Estimation (Regression) Experiment

We propose MS-HGNN, a symmetry-equivariant hetero- q€ Rf,q . R“‘; O BaseNode Vi O JointNode Vj  Foot Node Vs o — mgﬁHGGNNNN((Sé)Q) 73 3 ot
geneous graph ne.ural hetworlf for robotic dynamics learn- ap € R%wp € R i A / \ 4 A f, € R3— 10.0- Task: Predict 1D/3D GRFs from
ing. By embedding kinematic structure and morpholog- thD O O [I L, 9:5° 150-step proprioceptive history.
ical symmetry into the model, MS-HGNN improves in- 0.0- MS-HCNN-C» achieves the
terpretability, data efficiency, and model efficiency. We U 85 lowest RMSEzimproving over

. . . . 2 ’
validate our design through theory and experiments on di- hgeD [I g, Z 50 MI-HGNN by 1.50% (1D)
verse robotic tasks. :> :|l> :I|> :I|> | and 1.62% (3D).

hgtD [] l 70" The relatively modest gain in

Preliminaries ” . 3D is because of the low
X /Y GRF magnitudes.
MOI’phOlOgy-InfOrmed HGNN. We use€ a HEterOge— 0.0 Unseen Unseen Unseen Unseen Total / . g .

Py, l Friction Speed Terrain Al Conclusion:  Preserving sym-
neous Graph Neural Network (HGNN), where node and S O O I | i b v 6 it
edge types reflect the robot’s kinematic structure. Nodes ~ o \ / - 7 colated r/iulnjar:aascettﬁ;].fme emeton test FERE ;ncem?; (ljri:z:;);/etserr:i:: PrEgicton
such as base, joints, and feet are modeled as distinct types (a) Input Space (5) Morphological (¢) Heterogeneous (d) Morphological (e) Output Space |

hile ed de phvsical links () b Input Encoder Graph Neural Networks Output Decoder
(Vb' Vt’ Vf)' while edges encode pnysical 1Inks ( U) €- Figure 1: Overview of the MS-HGNN framework for robots with symmetry type G := K4. (a) The input space consists of the robot's current state observations, which are mapped to corresponding nodes in the HGNN.

tween them _ ThlS structu red gra ph imprOVES representa_ (b) and (d) The morphological symmetry encoder-decoder pair ensures that the learned representations respect the robot's morphology. (c) The HGNN is automatically constructed to preserve geometric symmetry. (e) The CentrOidaI Momentum EStimation (Regression) Experiment
] o ] output space consists of dynamics-relevant variables, obtained from their corresponding nodes in the HGNN.
tion of rigid-body dynamics.

. 1.00 1 r0.06 -
Euclidean: g, > G,, =0 H00
Morphological S Rigid-bod f hXg,) - X PO i
r?.ﬂ-) OologICa | li(.mmet-ry. |g;1 -DOAy SySte.mS o) \t/?/n h(XZ?q) ;pqu(gs)ng C, Morphological: gm g gp)q — ggm(p),q . . {'%J’ 0.05 0.981
fo_'b't symmetric kinematic branches and motions. Ve h(Xe,,) = pa (00 Xa We define the group action via permutation matrix pp. 0.97 0.04 5 0.96-
| A(Xs.,) = pate (9)X _ _ o 097 S0
efine a symmetry group G acting on robot states (q, q), Ll e Theorem (Permutation Automorphism). If ¢, satisfies: 3 +-1—+ -
with: ’X XBx—l' i X XBX—l ] o Base Nod 7 §0-96 10.03 5 0941
. asc INOde - - v )
g [<>> q e & & ; g g q .= & g O Joint Node o Q IObAgpb o AQ’ IOng T ng z095 0,02 §
_’OM(g)qJS_ _p%M(g)qJS_ gs Foot Node O\ - . . . : 50.92-
e Xo & SE. is th _ then it is a graph automorphism. Lemma (Equivariance). 0941 LI | . LR
. . MLP-Aug (C, EMLP ]12 4 r0.01 .IU 7 MLP-Aug (C, - MI__P—Aug Ki
WHEFE 5 E d.ls the Dase. Pose’ ane /O(g) > group If ¢,0b IS an aUtomorph|Sm, then: 0.931 g EMLP(CQ() | = MS-HG(NN)(K4) 0 EMLP(CQ()(C) —:—EMLP(K4() )
representation acting on the joint states. These symme- X X - EEEREE o | MSHGUN (C.)  —k— VS HONN (i)
) : . : . — ' Li Angul Test ' ' R R
tries are embedded in the GNN enabling weight sharing, gm > 26(Xg) = 25(gm > Xg) Cos. Sim. 1 Cos. Sim. t  MSE| ’ g (s of Parameters 6
enabling efficient |earning and generalizatiOn daCross sym- Theorem (MS-HGNN EqUivarianCE). If encoder h and Figure 5: Left: Centroidal momentum estimation results and Right: Linear cosine similarity for models of varying sizes

on the synthetic Solo dataset [3].

Task: Predict linear & angular momentum from joint-space inputs.

metric morphologies. decoder / satisty:

Figure 2: Morphological symmetry groups G := K4 (left, Solo robot) and G := C, (right, Al robot). o o —1
h(X) = p(g)X. 1(X)=plg) "X, MS-HGNN-C, /K, outperform all baselines [3][2].
Methods We prove th.at our constructed graph G is .equwarlant under  then our HGNN satisfies: MS-HGNN-C, achieves ~0.945 Cos. Sim. with 13.5k params.
. . morphological symmetry transformations. gm 2 f5(X) = fo(gm & X) Conclusion: Embedding correct morphological symmetry enables
1. Determine the morphological symmetry group G, < G is composed of subgraphs {G G,} (e.g., legs D .
. . . P grdp L Yqs &8 1883, _ | o accurate and compact momentum estimation; MI-HGNN fails due
Gr and th.e unique kme.matlc br-anches S of the system, arms), each with p symmetric instances. Conclusion: Our MS-HGNN is equivariant to morpholog- to symmetry mismatch.
where G is the generalized euclidean group. Symmetries are defined via group actions g, ical symmetry and generalizable across robotic systems.
2. Create subgraphs for all kinematic branches as
Q,- — {9,71(8/71), Cee g,)nrep(g)(S,,nrep(gi))}, where g,'m = : o : _ Conclusion & Future Work
Gi s Vit o € N < neo(SH). Contact State Detection (Classification) Experiment | |
3’ abel ] i 1 . We propose MS-HGNN, a general framework for robotic dynamics
. Label each subgrap g_i,j as Gpq, where p < |G 1.00- o e cowey  mmnaws, 1M 0950 Tack: Predict A-les contact statec learning that embeds kinematic structures and morphological symme-
cc?rLesponds tlo a_n elhement n gbr.oup G, and subgraphs E=3 CNN-Aug (€2 BEED MSHGNN (C;)  HEE MS-HGNN (K . = from. obrioce tiveghistories tries into a graph-based neural architecture. By integrating symbolic
0.95 1 ‘ . . . . . .
with same g lies In the same orbit. " 10M Bptlp\/l . Ip MS-HCNN-K priors, it combines the strengths of symbolic reasoning and neural
. . 0.900 i - - . - . .
4. For any subgraph class {Gg}, including the base node 0.90- { }]l{ | ]'} FGIS 0 ggge .A 0 875 4 networks. Theoretical and empirical results show improved gener-
-8M — ) i . . - . . .- . .
{Vs} that lacks the full set of |G| graphs, complete each o : { { it L 08751 (F1: 0. cc: 0.875). alization, sample efficiency, and interpretability. Future directions
group orbit by replicating elements along missing transfor- S | o < (850 Model Efficiency: Uses only include integrating more physical priors, extending to meta- and re-
. © (M 0 ! . . . N
mations and label them as G,, .. goso— ‘[ — 0.895 38% of EC_N_N > parame.ters. inforcement learning, and unifying perception and control.
5. Connect {V,,} with Cayley Graph. Connect each | ]l v Sample Eff.|C|en§y: A.ch.leves
subgraph G, , to V,, with edge type &, formalizing a 0.75- | ' ~0.9 F1 with 5% training data. [1] T. Lin and et al., “Legged robot state estimation using invariant Kalman filtering
oy 07751 Conclusion: Svmmetrv-aware and learned contact events,” in Proc. Conf. on Robot Learning, 2021.
graph &/ - NVAUS (C2) B LGN () ' ! ! 2] D. Butterfield and et al., “MI-HGNN: Morphology-informed het h
_ _ Aug (C; : 4 : : . Butterfield and et al., - : Morphology-informed heterogeneous grap
6. Add input encoders and output decoders for each node yaminl Wil R I R LUILE i |, 0.750 | RN (E) e MSHGWN () fijphar:er:egtre]r :ginz;:\;e:fﬁi?:iacy' neural network for legged robot contact perception,” in Proc. IEEE Int. Conf.
based on the subgraph class p it belongs to, ensuring mor- EONETORET T e MR e o 100K ?r?gﬁing3ggt<npleiOOK 200K P Y Robot. and Automation, 2025.
phOlOgical SymmEtry eqUivariance Gm in our GNN Figure 3: Left: Contact state detection and Right: Sample efficiency on the real-world Mini-Cheetah dataset [1]. [3] D.F.0O. Apraez and et al" “On discrete symmetries of robotics systems: A group-

theoretic and data-driven analysis,” in Proc. Robot.: Sci. Syst. Conf., 2023.

fxxie@caltech.edu, swei@gatech.edu /th Annual Learning for Dynamics & Control Conference research.gatech.edu/robotics, sites.gatech.edu/lunarlab



mailto:fxxie@caltech.edu
mailto:swei@gatech.edu
https://research.gatech.edu/robotics
https://sites.gatech.edu/lunarlab/

	References

