Compare with SOTA Methods on Classification Task
Model | Sym. | Leg-LF \(F_1\) \(\uparrow\) | Leg-LH \(F_1\) \(\uparrow\) | Leg-RF \(F_1\) \(\uparrow\) | Leg-RH \(F_1\) \(\uparrow\) | Accuracy \(\uparrow\) | \(F_1\) Score \(\uparrow\) |
---|---|---|---|---|---|---|---|
CNN | - | 0.771 ± 0.013 | 0.899 ± 0.003 | 0.884 ± 0.014 | 0.891 ± 0.024 | 0.731 ± 0.013 | 0.861 ± 0.004 |
CNN-Aug | \(\mathbb{C}_2\) | 0.854 ± 0.009 | 0.896 ± 0.022 | 0.835 ± 0.015 | 0.906 ± 0.013 | 0.778 ± 0.019 | 0.873 ± 0.007 |
ECNN | \(\mathbb{C}_2\) | 0.884 ± 0.012 | 0.887 ± 0.010 | 0.853 ± 0.011 | 0.860 ± 0.016 | 0.788 ± 0.029 | 0.871 ± 0.011 |
MI-HGNN | \(\mathbb{S}_4\) | 0.932 ± 0.006 | 0.936 ± 0.010 | 0.927 ± 0.003 | 0.928 ± 0.005 | 0.870 ± 0.010 | 0.931 ± 0.005 |
MS-HGNN | \(\mathbb{C}_2\) | 0.928 ± 0.013 | 0.933 ± 0.011 | 0.913 ± 0.016 | 0.937 ± 0.010 | 0.856 ± 0.013 | 0.929 ± 0.009 |
MS-HGNN | \(\mathbb{K}_4\) | 0.936 ± 0.008 | 0.944 ± 0.006 | 0.930 ± 0.011 | 0.948 ± 0.006 | 0.875 ± 0.012 | 0.939 ± 0.006 |
Training Samples (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Model | Sym | 2.50 | 5.00 | 10.00 | 15.00 | 21.25 | 42.50 | 63.75 | 85.00 |
CNN | - | 0.745 | 0.794 | 0.831 | 0.802 | 0.811 | 0.840 | 0.850 | 0.836 |
CNN-Aug | \(\mathbb{C}_2\) | 0.764 | 0.851 | 0.827 | 0.859 | 0.844 | 0.829 | 0.839 | 0.881 |
ECNN | \(\mathbb{C}_2\) | 0.840 | 0.841 | 0.851 | 0.843 | 0.867 | 0.877 | 0.785 | 0.881 |
MI-HGNN | \(\mathbb{S}_4 (G)\) | 0.872 | 0.908 | 0.926 | 0.930 | 0.937 | 0.940 | 0.932 | 0.931 |
MS-HGNN | \(\mathbb{C}_2\) | 0.760 | 0.893 | 0.910 | 0.923 | 0.926 | 0.939 | 0.935 | 0.939 |
MS-HGNN | \(\mathbb{K}_4\) | 0.869 | 0.897 | 0.913 | 0.922 | 0.919 | 0.939 | 0.935 | 0.942 |